


	Category: A. Particle Synthesis Institute: KIT
Karlsruhe Microwave Plasma Process (KMPP)	Location: Karlsruhe Institute of Technology Institute for Applied Materials (IAM-WPT) Building 695 Hermann-vHelmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany Contact Details of Technology Expert: Name: Dr. Dorothée Vinga Szabó Phone: +49 721 608-22938 Fax: +49 721 608-23956 E-mail: Dorothee.Szabo@kit.edu

Short technology description/Overview (approx 300 words):

The Karlsruhe Microwave Plasma Process is a non-thermal, low-pressure process. This method is highly applicable for the synthesis of nanoparticles with particle size <10 nm and very narrow particle size distribution. Beside the low intrinsic temperature in the plasma, one central feature of this process is the short residence time of the reactants in the plasma of only a few milliseconds. Due to the combination of short residence time in the reaction zone, low temperature, and equally charged particles, growth and formation of hard agglomerates is reduced. Another advantage of this process is, that synthesis of ceramic/ceramic, and inorganic/organic hybrid core/shell nanoparticles with sizes below 10 nm is possible. In such a case each nanoparticle is covered either with a ceramic or an organic layer, adding functionality to each particle. The temperature in a microwave plasma is significantly lower than in an AC or DC plasma because the energy *E*, transferred to a charged particle of a mass *m* in an oscillating electrical field is inversely proportional to its mass and the squared frequency. As the mass of the electrons is small compared to that of ions, at high frequencies a substantially larger amount of energy is transferred to the ions.

Main Features (Equipment Capabilities):	
 Microwave frequency: 2,45 GHz 	Core and/or shell materials:
 Microwave cavity: TE₁₁-mode 	 Fe₂O₃ (superparamagnetic)
 Precursors: Volatile (b.p. < 350°C @ 10mbar) and 	 TiO₂ (optical properties; solar cell)
water-free (chlorides, carbonyls, metal-alkoxides,	 SnO₂ (semiconducting; gas sensing properties;
metal-alkyl)	anode material for Li-ion battery)
 Synthesis of bare nanoparticles with primary particle 	 ZrO₂, Ta₂O₅, HfO₂ (optical properties)
sizes < 10 nm	 WO_x, MoO₃ (electrochromic material)
 Synthesis of ceramic core/shell nanoparticles 	 ZnO (semiconducting)
 Synthesis of hybrid core/shell/nanoparticles (ceramic 	 MgO, Al₂O₃, SiO₂
core/ organic coating)	 Others on request
 Synthesis of multi-layer nanoparticles 	 Organic coating
(core/shell1/shell2)	 Methacrylate, methylmethacrylate,
Powder collection by	 Organic dyes (anthracene, pyrene, perylene,
- Thermophoresis (10mg -500mg)	coumarines,)
 Deposition on substrates (10mm²) 	 Surfactants
 In situ dispersion in resins, diethylenglycole, high 	 Decoration of nanoparticles with noble metals (Pt, Pd,

